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2. SUMMARY

2.1. Vision algorithms for fine grained parallelism

The general goals of our research effort supported by the current contract is to
explore the potential applications and performance of fine grained computer
architectures for vision. To do this, we will develop efficient parallel algo-
rithms for the Connection Machine system (CM) that will facilitate real-time
understanding tasks for autonomous vehicle navigation. Our work is critical
to allow an effective comparison of fine-grained models of parallel computa-
tion with the more common coarse-grained machines, such as the Warp and
the Butterfly.

2.2. The first twelve months

From August 31th 1985 to July 31th our research has concentrated in clas-
sifying and designing three different classes of parallel algorithms for vision.
In that period of time we also implemented some of the algorithms using a
CM system simulator, running on the Symbolics 3600. On July 31th Think-
ing Machines Corporation delivered to the Artificial Intelligence Laboratory
the first Connection Machine system, consisting of 16384 processors. During
August several vision algorithms were successfully implemented on the CM,
achieving speed-ups of several hundred times relative to the Symbolics 3600.

The body of the report gives a brief overview of the results of our research
during the first twelve months of funding. Details can be found in the enclosed
publications. Some of the work is reported in publications now in preparation.
We enclose a more formal description (by J. Little) of our evaluation of specific
vision algorithms on the CM.

-------------------------------
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3. Achievements in the first year

As planned in our original proposal we have refined our taxonomy of paral-
lel visual algorithms. More importantly, we have designed parallel versions
of several Class 1 algorithms (for early vision, directly derived from regular-
ization methods). When in August the Connection Machine system became
available, the preparatory work allowed us to implement within a few days
several of these algorithms. During the year we have also designed Class 2
and 3 algorithms, while at the same time studying some of the associated ba-
sic problems in recognition and representation. We list here briefly the main
achievements: details can be found in the enclosed technical reports.

3.1. Simulator specifications

Specifications have been formulated for a Connection Machine simulator that
has been later implemented at GE (and TMC). We have been using the TMC
simulator running on the Symbolics 3600 for the last several months. The
experience with it has been very positive: programs debugged on the simu-
lator ran without problems on the machine. The simulator is a very useful
tool for leveraging the use of a high-performance, single-user machine such as
the Connection machine system. Program development can be done almost
completely without wasting precious resources.

3.2. Image manipulation and display tool

We have developed a powerful image display and manipulation tool as a Lisp
Machine system. It has been extensively used for evaluating vision algorithms
on both the Symbolics machines the Connection Machine system. It has
become a critical component for our vision work.

3.3. Vision utilities

We have extended a collection of Lisp utilities for doing interactive vision
work. These utilities also serve as powerful primitives for constructing larger
vision programs. We have begun transporting the system from the Symbolics
machines to the Connection Machine system.
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3.4. Taxonomy of vision algorithms

3.4.1. Three classes of vision algorithms

Class I algorithms correspond to early vision problems that can be formulated
in terms of standard regularization principles, such as edge detection, stereo,
motion, surface interpolation and shape from shading. The basic members of
class I are convolution and multigrid algorithms that map into parallel, fine-
grained architectures with local connections. Class IT algorithms correspond
to general, intermediate vision problems such as the fusion of information from
different sources and the detection and use of discontinuities. Algorithms in
this class are based on non-standard regularization principles and are more
tightly interfaced with high-level, symbolic information. They require fine-
grained architectures with local and non-local communication capabilities.
Class III algorithms correspond to higher level vision problems such as shape
representation, object recognition and analysis of spatial relations. This het-
erogeneous class of algorithms cannot presently be described in terms of reg-
ularization analysis. They map into parallel architectures with the capability
of processing pointers and symbolic, non-retinotopic data structures.

3.4.2. Classification for early vision

L A

T

We have provided a classification of vision algorithms derived from standard
regularization and including most early vision problems. Early vision is the set
of visual modules that perform the first steps of processing by extracting from
the images a map of the physical surfaces around the viewer. High-level vision
can be identified with the “later” problems of object recognition and shape
representation. From this point of view early vision is the inverse problem of

A S A W SN s P

optics and computer graphics. The natural way to approach this problem is to %
exploit a priori knowledge about our 3-D world to remove the ambiguities of .,.'
the inverse mapping. One of the major achievements of computer vision work ‘-:'j
in the last decade is the demonstration that generic natural constraints, that X
is. general assumptions about the physical world that are correct in almost all i
situations, are sufficient to solve the problems of early vision. Very specific, j‘
high-level. domain-dependent knowledge is not needed. .
|
Two main themes are therefore intertwined at the heart of the main 3
achievement of early vision research. They are: a) the identification and *
characterization of generic constraints for each problem and b) their use in ::.
N
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an algorithm to solve the problem. A general method for translating a cer-
tain class of common constraints into parallel algorithms is provided by reg-
ularization theory. This new unifying theoretical framework is based on the
recognition that most early vision problems (see Table 1) are mathematically
ill-posed problems (in the sense of Hadamard). A problem is well-posed when
its solution exists, is unique, and depends continuously on the initial data.
Ill-posed problems fail to satisfy one or more of these criteria. In vision, edge
detection — the detection and localization of sharp intensity changes - is ill-
posed, when considered as a problem of numerical differentiation, because the
result does not depend continuously on the data. Another example is the
reconstruction of 3-D surfaces from sparse data points which is ill-posed for a
different reason: the data alone, without further constraints, allow an infinite
number of solutions, so that uniqueness is not guaranteed without further
assumptions.

The main idea in mathematics for “solving” ill-posed problems - that is,
for restoring well-posedness — is to restrict the space of admissible solutions
by introducing suitable a priori knowledge. In vision, this is identical to
exploiting the natural constraints described earlier. Mathematicians have
developed several formal techniques for achieving this goal that go under the
name of regularization theory. It is therefore not too surprising to find that
some of the algorithms proposed in the past for solving specific early vision
problems are precisely regularization algorithms of one type or another. In
particular, Table 1 shows the solutions of several vision problems provided
by standard regularization (Tikhonov, 1977; Poggio et al.,, 1985). Some of
the solutions were known already (see especially the work by Horn, 1986,
Grimson, 1981 and Hildreth, 1984), others were generated by the recognition
of this common framework. Table 1 represents our present classification of
regularization algorithms.

In standard regularization the solution is found as the functiou that min-
imizes a certain functional. This functional can be regarded as an “energy”
or a “cost” that measures how close the solution is to the data and how well it
respects the a priori knowledge about its properties. From the point of view
of implementation the following two classes of algorithms are suggested by
regularization:

e Steepest descent methods that can always be applied.

o Convolution schemes can be used when the data are given on a regular

lattice and the direct operator is space invariant.




3.5. Design and implementation of early vision algorithms (Class
1 and 2)

In addition to the planned design and implementation of several early vision
algorithms, we have been able to implement already, ahead of schedule, the

- following ones on the Connection Machine system (some of them in collabo-
ration with Thinking Machines Corporation):

e Parallel convolution

e  Zero-crossing detection

e Stereo-matching

e  Surface reconstruction

e Canny's edge detector

¢ Measurement of optical flow

Ia all these cases, we obtained speed improvements from hundred- to
thousand-fold with respect to the Symbolics 3600.

3.6. Design of other Class 2 algorithms

We have also analyzed and designed but not yet implemented (as of August
31th) a number of other parallel vision algorithms:

e Concurrent multigrid methods

e Surface reconstruction combining depth and slope measurements in par-
allel

o Parallel detection of texture boundaries
e Stereo matching of image intensities

e Stereo matching and resolution of contours

3.6.1. Algorithms based on stochastic regularization

Other ‘regularization” methods exist. Geman and Geman (1984), for in-
stance, have introduced coupled Markov Random Fields models which can
be regarded as a probabilistic regularization method. The attraction of this
formulation is that it can be used to exploit a much larger class of natural con-
straints than standard regularization. It can take into account, for instance.
constraints on discontinuities such as their continuity. Depth boundaries in a

» -" -.' . .
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depth map, for instance, are usually continuous, connected, nonintersecting
lines. Furthermore, coupled Markov Random Field models seem a powerful,
albeit expensive, method for approaching a most critical problem in early
vision: how to integrate several modules of early vision, such as stereo and
motion and shading, to obtain a consistent and robust map of 3-D surfaces
around the viewer. We have implemented on the Connection Machine simula-
tor a MRF based system to integrate information from several visual sources.
The system has been used to perform surface reconstruction in the presence
of discontinuities. A preliminary Connection Machine implementation exists
since August: it allows, for the first time, extensive simulations of this class
of algorithms which is computationally very expensive.

3.7. Design of high-level (Class 3) algorithms

Computation of spatial relations and visual recognition are two "high-level”
problems in vision for which no well defined class of algorithms exists. We have
done basic research in these problems and designed related parallel algorithms.
In particular:

¢ We have developed parallel processes, to extract extended spatial ele-
ments from an image.

e  We have developed a parallel version of the object recognition algorithm
of Grimson and Lozano-Perez.

e  We have extended the previous algorithm by fully exploiting the connec-
tion Machine router.

o  We have developed two additional CM implementations of the Grimson-
Lozano-Perez recognition algorithm.

e We have developed a Connection Machine-based scheme for matching
silhouettes of natural objects to models of the objects

P
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Table 1: Classification of regularization principles in early vision

Consider the direct problem of finding y, given z and the mapping A:
Az =y

The inverse and usually ill-posed problem is to find = from y. Standard
regularization suggests transferring Equation (1) into a variational problem
by writing a cost functional consisting of two terms. The first term measures
the distance between the data and the desired solution :z: the second terms
measure the cost associated with a functional of the solution || Pz|| that embeds
the a priori information on z. In summary, the problem is reduced to finding
z that minimizes

2
4z = yll” + AllPz|

where ), the regularization parameter. controls the compromise between
the degree of regularization of the solution and its closeness to the data.
Mathematical results characterize various properties of this method such as
uniqueness and behavior of the solution. The table shows some of the early
vision problems that have been “solved” in terms of standard regularization.

The first five are standard, quadratic regularization principles (see Pog-
gio et al., 1985). In edge detection the data on image intensity (i = i(r))
(for simplicity in one dimension) are given on a discrete lattice: the operator
S is the “sampling” operator on the continuous intensity distribution f to
be recovered. Regularization in this case is equivalent to the following con-
volution algorithms: convolve the image with the appropriate derivative of
a 2-D spline filter, which is very close to a gaussian function. Gaussian-like
filters at various resolutions (corresponding to different A values) have been
extensively used in computer vision (Marr, 1982). A similar functional may
be used to approximate time-varyving imagery. The spatio-temporal intensity
to be recovered from the data i(r.y.t)1s f(r.y.t): the stabilizer imposes the
constraint of constant velocity V" in the image plane.

In area-based optical flow (Horn, 1986). i is the image intensity; © and v
are the two components of the optical flow field. In contour-based optical flow

r is the “velocity™ vector to be retrieved. v"

is its known normal component
along the contour (Hildreth, 1984). In surface reconstruction (Grimson. 1981)
the surface f(z.y) is computed from sparse depth data d(r.y). In the case of

color the brightness is measured on each of three appropriate color coordinates
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I* (v = 1.2.3). Thesolution vector z contains the illumination and the albedo
components separately. Minimization of an appropriate stabilizer enforces
the constraint of spatially smooth illumination and either constant or sharply
varying albedo. For shape from shading (Ikeuchi and Horn, 1981) and stereo,
we show two nonquadratic regularization functionals. R is the reflectance
map. f and ¢ are related to the components of the surface gradient. The
regulanzation of the disparity field d involves convolution with the Laplacian
of a Gaussian of the left { L) and the right ( R) images and a Tikhonov stabilizer
corresponding to the disparity gradient. Steepest descent algorithms can be

used in all the cases (with the exception of stereo).
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': Table 1
Classification of Regularization Algorithms in Early Vision
Problem Regularization Principle
Edge detection f [(Sf - i)2 + /\(f")z}dx
N Optical flow [ [Gewtigo +30)" + M2 + w2 + 02 +02)|de dy
~
E (area based)
3 Optical Flow J{(V-N=o™) 4 A(&V)*]ds
! (contour based)
N
v Surface P8 £ = d)" + 02 + 262, + 72,)"]de dy
E reconstruction
ot Spatiotemporal J [(Sf - i)2 +MVf-V+ f,)2]dx dy dt
Ej approximation
LJ
i Color 172 — Az||* + 5[ P=||*
i Shape from J [(E —R(f,9) +A(f7 + £,7 + 9.2 + 9y2)] dz dy
> .
ﬁ shading
“
M 2
Stereo f { [V"’G * (L(z, y) — R(z + d(z, y),y))] + /\(Vd)2 }dr dy

v
Y
y
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PARALLEL ALGORITHMS FOR COMPUTER VISION

James J. Little
Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Abstract

We present solutions to a set of benchmark problems for Image Understanding for the Con-
nection Machine. These problems were proposed by Darpa to evaluate architectures for Image
Understanding systems, and are intended to comprise a representative sample of fundamental
procedures to be utilized in Image Understanding. The descriptions of solutions on the Connec-
tion Machine embody several general methods of using the machine to filter images, to determine
connectivity among image elements, to determine geometry of image elements and, finally, to
compute graph properties, such as matchings and shortest paths. Mike Drumheller, Willie Lim,
Guy Blelloch, Carl Feynman, all of Thinking Machines Corporation, and Todd Cass, of the
Al Lab, have all been instrumental in contributing algorithms and good ideas about using the
Connection Machine.

Vision System
The parallel computing environment at the MIT Al Lab consists of a Connection Machine [4]
with 16K processsors with a Symbolics 3640 Lisp Machine as host.

The Connection Machine

The Connection Machine (CM) [4] is a parallel computing machine having 64K processors, op-
erating under a single instruction stream broadcast to all processors (figure 1). Each of the
processors is a simple 1-bit processor with 4K bits of memory. There are two modes of com-
munication among the processors: first, the processors are connected by a mesh of wires into a
256 x 256 grid network (the NEWS network, so-called because of the four cardinal directions),
allowing rapid direct communication between neighboring processors, and, second, the router,
which allows messages to be sent from any processor to any other processor in the machine. The
processors in the Connection Machine can be envisioned as being the vertices of a 16-dimensional
hypercube. Figure 2 shows a 4-dimensional hypercube; each processor is connected by 4 wires
to other processors. Each processor in the CM is identified by a unique integer in the range
0...65536, its hypercube address, imposing a linear order on the processors. This address de-
notes the destination of messages handled by the router. Messages pass along the edges of the
hypercube from source processors to destination processors. To allow the machine to handle data
with more than 64K elements, the Connection Machine supports the concept of virtual proces-

sors where a single physical processor can operate as multiple virtual processors by serializing

operations in time. The number of virtual processors assigned to a physical processor is denoted

o o




Figure 1: Block Diagram of the Connection Machine (from [4])

Figure 2: 4-dimensional Hypercube

APLIPRIPS Y N R N I i I L A T R AR SR S S
MY O3 LSO PRSP R A S



Te et pca dta 8. Bla Ve ¥ fta ity Vs 9 a At Bgta b g d g i g fg Big £ g 8 Pk oyt g t g R g tod 0 b bl Rt Rat del dat let Ret biadassbindbenl i atbnsii ek bbb b e *

by the virtual processor ratio (VP ratio), which is always > 1. When the VP ratio is greater than
1, the CM is necessarily slowed down by that factor.

Many of the IU benchmark problems must be solved by a combination of both communication
modes on the CM. The CM implementation of algorithms can take advantage of the underlying
architecture of the machine in novel ways. There are several common, elementary operations
which recur throughout this discussion of parallel algorithms. Sorting, for example, of ali 8-bit
pixel values in a 512 x 512 image (VP of 4:1) takes approximately 30 ms. A 256 x 256 image (VP
1:1) can be sorted in approximately 10 ms. This operation is primitive, and is useful, because of
its power and speed.
Another primitive, global operation is the scan operation, which uses the hypercube connections
underlying the router to distribute values among the processors of the CM. scan takes a binary
associative operator @, with identity O, an ordered set [ag,81,...,8n—1] and returns the set
(0,a0, (a0 B a1),...,(GoD a1 ®... D an_32)]. Binary associative operations include min, max, and
plus. A maz-scan operation acts on a field in the CM memory, storing in the destination field
of the n** processor, the maximum value of the source field of all processors 0...n — 1. This
is very rapid (< 1 ms) and can be very useful. Other operations, such as plus-scan have been
implemented. The enumerate operation assigns a unique non-negative integer to all selected
processors, in the order of their cube-addresses, using plus-scan on processors with initial value
unity. Recently, the scan operations have be augmented to use the NEWS addressing scheme,
so that summing, taking maxima, and copying can operate in the grid coordinate system. In
addition, segment bits permit the scan operations to divide the processors into segments, whose
limits are marked by processors whose segments bits are set. copy-scan copies values to processors,
in the chosen address mode. The scan operations implement the abstract operation known as
parallel prefiz [10]. Time for scan operations are, for example, 200 us for enumerate, and 350 us
for plus-scan on an 8-bit field. Figure 3 shows an example of plus-scan taken from [10]; on the up
sweep, each node in the tree executes ¢ on the sum values of its two children nodes, and stores
the value of the sum in the left subtree. These are indicated by the two values at each node. On
the down sweep, each node passes to its left child the value from its parent, and passes to its
right child @ of its parent and the value of the left child kept from the up sweep.
An important primitive operation is doubling [5], which facilitates finding the extremum of a
number contained in each processor in a ring. Using message-passing on the router, doubling
can propagate the extreme value to all processors in the ring in O(log N) steps, where N is the
number of processors in the ring. Each step involves two send operations. Typically, the number
is chosen to be the cube-address (a unique integer identifier) of the processor. At termination,
each processor connected in the ring knows the label of the maximum processor in the ring,
hereafter termed the principal processor. This serves to label all connected processors uniquely
| and to nominate a particular processor (the principal) as the representative for the entire set
of connected processors. Figure 4 shows the propagation of values in a ring of eight processors.

Each processor initially, at step 0, has an address of the next processor in the ring, and a value
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Figure 3: Parallel Scan on a Tree (from [10])

Step| O 1 2 3 4 5 6 7
o 1 2 3 4 5 6 7 0
4 1 5 2 11 12 19 3

1 2 3 4 5 6 7 0 1
4 5 5 11 12 19 19 19

9 4 5 6 7 0 1 2 3
19 19 12 19 19 19 19 19

3 o 1 2 3 4 5 6 7
19 19 19 19 19 19 19 , 19

Figure 4: Distance Doubling, upper entry is the address, the lower is the value

which is to be maximized. At the termination of the #*® step, a processor knows the addresses
of processors 2° + 1 away and the maximum of all values within 2'~1 processors away. In the
example, he maximum value has been propagated to all 8 processors in log 8 = 3 steps.

Rules of the Game

For the purposes of these benchmarks, output operations have sometimes been included, but
input operations have been neglected. The justification for this is that a vision system using a
parallel processor such as the CM should maintain its data structures as long as possible in the
parallel computer. Transfers to and from a serial host should be avoided as often as possible.
Several of the benchmarks specify that the input is in the form of real numbers. In particular,

the benchmarks on Geometric Constructions and Triangle Visibility use real-valued coordinates.

The benchmark on edge detection can be understood to require real numbers for the entries in
the “Laplacian” operator. The Connection Machine, however, has bit-serial processors and hence

has no fixed word length. It is extremely easy then to compute with indefinite length integers;
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our implementation of convolution uses this feature, so we do not use real numbers in smoothing
the image for edge detection. The only other benchmarks in which real numbers are not used are
the Voronoi Diagram and Euclidean Minimum Spanning Tree (EMST) example; in the first, the
data are assumed rounded to integer values so that the mesh connections in the Connection can
be used for brush-fire propagation, and the EMST depends on the Voronoi Diagram. All other
examples assume real arithmetic when necessary.

Connection Machine programs utilize Lisp syntax, in a language called *Lisp (11]. Statements
in *Lisp programs are compiled and manipulated in the same fashion as Lisp statements, con-
tributing significantly to the ease of programming the Connection Machine. The experience at
MIT in using the CM software environment has been that programming the CM is a relatively
easy progression from using Lisp, and that uses can, within a week, begin programming complex
programs on the CM. The improvements in execution time from implementation to estimated
times reflect expected improvements in micro-code for certain operations on the CM, as well as
re-coding of the algorithms in a low-level language for the CM (PARIS). A compiler for *Lisp
is being constructed, which will eliminate the necessity of re-coding in PARIS, while generating
code which uses the Connection Machine efficiently.
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1. Edge detection
In this task, assume that the input is an 8-bit digital image of size 512 x 512 pixels.

1. Convolve the image with an 11 x 11 sampled “Laplacian” operator [1]. (Results within 5
pixels of the image border can be ignored.)

2. Detect zero-crossings of the output of the operation, i.e. pixels at which the output is
positive but which have neighbors where the output is negative.

3. Such pixels lie on the borders of regions where the Laplacian is positive. Output sequences
of the coordinates of these pixels that lie along the borders. (On border following see [2],
Section 11.2.2.)

The size of this image requires 4 virtual processors per physical processor. Each pixel is mapped
into a virtual processor.

Convolution with Laplacian

The 11x11 sample “Laplacian” actually corresponds to filtering with a Gaussian where o is 1.4,(
(1], but see (8], where it is argued that a much larger mask should be used for reliable results).
But, for a mask diameter of 11 pixels, the binomial approximation to the Gaussian, followed by
a discrete Laplacian, requires only 3 ms.

Detecting Zero-Crossings

This takes negligible time (0.05 ms). Each processor need only examine the sign bits of neigh-
boring processors.

Border Following

To analyze this task, we consider two parameters, N, the number of curves in the image, and
Maz, the number of pixels on the longest curve. Each pixel in the CM can link up with the
neighbor pixels in the curve, by examining its 8-neighbors in the grid, .1 negligible time (0.2 ms).
Each pixel on the curve must next be labeled with a unique identificr {or the curve. Doubling
permits the pixels on the curve to select a label, the address of the principal processor, for the
curve, and to propagate that label throughout the curve in O(log Mur) steps.

Then, the total number of curves can be computed in 350 us, by selecting the principal processors,
and enumerating them using a scan operation. The scan operation can return the number of
curves (V).

At this point, the curves have been linked, labeled uniquely, and counted. The structure con-
structed so far is sufficient to support most operations on curves for image understanding, so we
can consider all processing after this to be for output only. To output the pixels from the CM,
the points on the curves should be numbered in order to create a stream of connected points.
The curve-labelling step, using doubling, can be augmented to record the distance from the prin-

cipal processor, as well as its label, during label propagation, at only a slight increase in message




length. We can find the length of the longest curve, Maz, by one global-max operation (200us).
We use sorting to get the points on the curves into a stream order for output. For the s** point
in the I*® curve, we construct the number Mazl + ¢ to encode the point’s position on the curve
and its membership in the I'* curve. Each point is ranked by this value. Points of the I** end
up ranked in order of their position on the curve. This takes O(log Maz + log N + 1) ms.

The ordered pixels then send their (x,y) values to the address given by the rank; this takes one
send operation, with no collisions. The (x,y) coordinates of the pixels on the curve will be in
sequential order in the processors with cube address O and on.

The total for Border Following is:

Propagate label and enumerate points 4 log Maz ms
Enumerate curves 350us
Rank pixels 2.5(log Maz + log N + 1)ms
Send 1 ms

For typical values 512 x 512 image, Size = 512, Max = 512, N = 256, so:
log Maz = 9

lgN=8

log Stze =9

Propagate label and enumerate points 40ms
Enumerate curves 350us
Rank pixels 45ms
Send 1ms

The first two sub-tasks are necessary to construct curves out of individual pixels. The last two are
necessary for output. Considering the first two, Border Following requires 40ms. The remaining
time, to prepare for output, is 46ms. In total, approximately 100ms is need to perform Border
Following.
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The first two steps, Convolution and Detecting Zero Crossings, add negligible tim= to this process,
so approximately 100ms should suffice.

Edge Detection

Sub-task Implemented | Estimated
Convolution 3ms 2ms
Find Zero-Crossings 0.5ms 0.5ms
Propagate label 40mns 40ms
Enumerate curves 350us 350us
Rank and send pixels 9lms 46ms
Total - without Output 44ms 43ms
Total - with Output 135ms 99ms

Note: The times quoted here are based on a configuration of a 64K CM, using a Virtual Processor
ratio of 4:1.

2. Connected component labeling

1. Here the input is a 1-bit digital image of size 512 x 512 pixels. The output is a 512 x 512
array of nonnegative integers in which

2. pixels that were O’s in the input image have value 0

3. pixels that were 1’s in the input image have positive values; two such pixels have the same
value if and only if they belong to the same connected component of 1’s in the input image
(On connected component labeling see [2], Section 11.3.1.)

A fast practical alogrithm for labeling connected components in 2-D image arrays using the
Connection Machine has been developed by Willie Lim [5]. The algorithm has a time complexity
of O(log N) where N is the number of pixels. The central idea in the algorithm is that propagating
the largest or smallest number stored in a linked list of processors to all processors in the list
takes O(log L) time, where L is the length of the list, using doubling.

In the algorithm (see [5] for more details), the label of a connected (4-connected) component is
the largest processor address (i.e. processor id) of the processors in the set. The 2-D array of
processors in the Connection Machine are numbered from left to right, top to bottom fashion.
The algorithm first looks for boundary processors i.e. processors which is either on the array
boundary or has at least one neighbor (8-connected) with a different pixel value. These processors
are linked together to form matching pairs of boundaries separating pairs of regions. For example
if region A is completely surrounded by region B, then at the border between A and B there are
two matching boundaries—one on the A side and the other on the B side of the border. The label
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of each boundary is found in O(log V) time. Since a region can have more than one boundary (e.g.
when it surrounds one or more region), the largest boundary label has to be found. This is done
by building a tree of boundaries such that each boundary that is not the outermost boundary of
a region is connected to a boundary (in the same region) to its East. If there is more than ore
boundary to its East, it is connected to the one with the largest boundary label. Setting up this
connectivity takes O(log N) time. The tree of boundaries is used for joining up the boundaries of
the region into one long boundary. In another O(log N) step, the largest boundary label, which
is also the largest processor id in the set, is propagated to all the boundary processors in the
region. This label which is also the region label is propagated to all the processors in the region in
another O(log N) step. Thus the whole algorithm takes 18 log Nms on the Connection Machine.
The complexity of this step is measured in terms of the longest boundary in the image. If N
is of the order of 512 * 512, then log NV is 18, so the estimated time for this operation is 300ms
(worst case). When the longest boundary is approximately 512 pixels long, the time is 150ms.
Note that these estimates are based on existing hardware.

Another connected component algorithm by Guy Blelloch utilizes scan operations along grid-lines.
In each phase of his algorithm, the label of a region, as specified by the processor with maximum
cube-address, is propagated left, right, up and down, with a maz-scan operation. The number of
phases of this algorithm depends on the alignment of figures in the image. Its worst-case behavior
originates from an image containing long ellipsoidal regions, oriented along diagonals. Present
implementations require 36ms per phase, but expected rewrites into micro-code will bring this
down to 12ms per phase. The number of phases is commonly around 12, which means that it
also requires approximately 150ms for a 512 x 512 image.

Connected Component Labeling

Method Implemented | Estimated
Doubling (length = 512 x 512) — 300ms
Doubling (length = 512) — 150ms
Scanning (12 phases) 450ms 150ms

Note: The times quoted here are based on a configuration of a 64K CM, using a Virtual Processor
ratio of 4:1.

3. Hough transform

The input is a 1-bit digital image of size 512 x 512. Assume that the origin (0,0) image
is at the lower left-hand corner of the image, with the x-axis along the bottom row.
The output is a 180 x 512 array of nonnegative integers constructed as follows: For
each pixel (x,y) having value 1 in the input image, and each i, 0 <1 < 180, add 1 to
the output image in position (i,)), where j is the perpendicular distance (rounded to
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the nearest integer) from (0,0) to the line through (x,y) making angle i-degrees with
the x-axis (measured counterclockwise). (This output is a type of Hough transform;
if the input image has many collinear 1’s, they will give rise to a high-valued peak in
the output image. On Hough transforms see [2], Section 10.3.3.)

The solution to this problem will involve 180 separate operations, each of which computes the
Hough Transform for a particular angle, . For each angle, broadcast cosf and sinf to each of the
processors. Each processor then computes the scalar product of its (z,y) address in the grid with
the normal vector described by the broadcast pair. This number is bounded above by 512v/2,
not 512 as suggested in the problem description. This can, of course, be remedied by scaling by
V2. Also, we can use a clever trick, suggested by Mike Drumbheller, to reconfigure the processors
- each computes its location on a linearization of the machine by lines normal to the specified
angle. Each pixel then has a unique address, sequential along the normal lines, in the machine.
Each pixel can send its value to the processor with its number, in one router cycle (there are no
collisions). The pixels then lie, in linear order in the machine, according to their position on the
normal lines. A boundary processor is one which occurs at the beginning of one of the normal
lines. Then a special plus-scan operation can accumulate the numbers for the histogram in the
boundary processors. One send operation can collect the values into the histogram. This suffices
to construct a column of the histogram. Each angle requires some computation to

1) compute the scalar product

2) compute an address along scan lines

One send, followed by a scan, followed by a send completes the process for a column. Each angle
should require about 4 ms (VP 4:1), and only 3ms for VP 1:1. Then entire Hough Transform
should then be computed in approximately 720ms. This estimate is, of course, based on a 512x512
image. Then, the CM is using a 4:1 VP ratio, resulting in a reduction in processing speed by
a factor of 4 for most operations. For a 256x256 image, the time for the histogram would be
reduced to 540ms. The procedure describe here uses unique addresses for the linearization step.
There is little penalty for having up to 16 collisions per destination, so a randomizing strategy
is feasible in which messages are sent to random locations in a range depending on the normal
distance. The messages, when they arrive, are summed, using the send with sum operation.
Consider a Hough Transform in which edge fragments form the primitives, rather than pixels.
Each point in the machine can then generate an integer identifying its Hough Transform value,
using no more than 17 bits (512 x 180). These values can be sorted in 25ms, plus-scanned, and
then sent to the table. The total should be no more than 30ms.

Note: The times quoted here are based on a configuration of a 64K CM, using a Virtual Processor
ratio of 4:1.

4. Geometrical constructions

The input is a set S of 1000 real coordinate pairs, defining a set of 1000 points in
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Hough Transform

Method Implemented | Estimated
Full 180 steps (512x512) — 720ms
Full 180 steps (256x256) — 540ms
From edge elements (512x512) — 30ms

the plane, selected at random, with each coordinate in the range [0,1000]. Several
outputs are required.

1. An ordered list of the pairs that lie on the boundary of the convex hull of S, in
sequence around the boundary.

2. The Voronoi diagram of S, defined by the set of coordinates of its vertices, the
set of pairs of vertices that are joined by edges, and the set of rays emanating
from vertices and not terminating at another vertex. (On Voronoi diagrams see
[3], Section 5.5.)

3. The minimal spanning tree of S, defined by the set of pairs of points of S that
are joined by edges of the tree.

Convex Hull

Each non-terminating ray of the Voronoi Diagram, described later, corresponds to an edge of the
convex hull of the set of points. Generating the ordered set of points on the hull from the Voronoi
diagram only requires traversing the Delaunay triangulation along edges which correspond to
these rays, and should take O( H) steps, where H is the cardinality of the set of rays. Each step
involves following a pointer in the CM, less than 1ms.
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An alternative method for the convex hull calculation begins from Graham’s sequential algorithm
[3,p.103), and does not rely on the underlying grid. Each point is assigned an angle by constructing

-

a vector from a point interior to all points. This point can be determined in 4 extremum operations
on the CM, finding the x and y extrema of the points. Then the points are sorted in 20ms, by this
angle. Graham’s algorithm then recursively constructs convex wedges from pairs of neighboring
points and the center point. Initially, these are triangles. The outer curves of these wedges can
be merged into new convex wedges in O(log /V) steps [7|. There are O(log V) merge steps, so
the overall computation requires O(log? N) router operations. Since N = 1000, log N is 10, and
the whole process requires 100ms, simply for the router operations. Other computations may
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bring the entire cost up to 200ms. All computations are in floating point. Also, the analysis here :
considers worst case. p
A simple *Lisp implementation of the Jarvis march algorithm (3] was constructed. In each '
iteration, each point computes its slope from a reference point, which is on the hull or outside
(at first). Computing the slope means two subtractions and one division. This, plus finding the
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global minimum slope, and finding the point with that slope, constitutes each step. The simple
implementation takes 5ms per step, which could be reduced to 3ms, by re-coding in PARIS. Trial
examples with random points had an average number of points on the hull of approximately 23.
The total time required is usually 150ms, which would be 90ms in the PARIS version. This
method would require 3 seconds if all 1000 points were on the hull, but it is marginally faster in

the expected case.

Voronol Diagrams

Aggarwal et al. [6] describe a O(log® N) algorithm for computing Voronoi diagrams in parallel
using the CREW (Concurrent Read Exclusive Write) model. For this particular example, this
works out to 1000 steps, each of which will take at least 1ms. This requires at least 1 second in
total. The algorithm description is sketchy and seems difficult to implement. A careful analysis
might show that this has a high constant multiplier. Since the CM has the NEWS network, a set
of mesh connections among the processors, a brush-fire method can be easily implemented on the
CM. The points have coordinates in the range [0,1000], so the CM must use a VP ratio of 16:1
to implement an integer brush-fire method. One can argue that in many vision applications the
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coordinates of the points are restricted to the range of the resolution of the camera coor...nate
system, in which case 512x512 is a reasonable range. A VP ratio of 4:1 results from a 512x512 grid.
Using the full Euclidean-distance metric, and propagating the index of the processor conta aing
the point, the Voronoi region around a point can be labelled in D steps, wher: D is the diameter
of the largest Voronoi region. Constructing the Delaunay triangulation, the dual of the graph
of the Voronoi diagram, can be done by propagating back to the originator the indices of all
points which share a Voronoi edge. This also takes D) steps. This can, of course, be simplified
by only performing this back-propagation step from the Voronoi vertices. Thus, collisions can
be minimized. Alternatively, messages from Voronoi vertices can carry the neighbor information
to the original points. This can be accomplished in one router cycle, with an average number of
collisions of 6. Propagation (with VP ratio 1:1) takes 30ms per step in experiments; with coding
in PARIS, or *Lisp compilation, this should be improved to no more than 10ms per step. With a
VP ratio of 16:1, a propagation step should take 160ms. Propagating to all Voronoi edges takes
160D ms (at 16:1), where D is the diameter of the largest Voronoi region. Trial examples with

randomly distributed points in the region had average diameter approximately 12, so this step
should take less than 2 seconds (16:1), which reduces to 500ms for 512x512. The additional work

to identify Voronoi vertices and send the information about connections will take less than 10ms.

Minimum Spanning Tree

Guy Blelloch (personal communication) has developed an O(2.5log N) algorithm for computing
the MST of a graph, where N is the number of vertices in the graph. Each step in this process
requires approximately 6ms. The Euclidean MST derives from the VD, so only edges in the MST
need be examined. 25 steps (estimated for this size graph) should then take 150ms. The time
complexity, concretely, is 15log N ms, where /N is the number of vertices in the graph.
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Geometric Constructions

Sub-task Implemented | Estimated
Convex Hull (from VD) — 50ms
Convex Hull (Graham scan) — 200ms
Convex Hull (Jarvis march) 150ms 100ms
Voronoi Diagram (1024x1024) 4s 2s
Voronoi Diagram (512x512) ls 500ms
Minimum Spanning Tree (from VD) — 150ms

Note: The times quoted here are based on a configuration of a 64K CM. For the two Voronoi
Diagram methods, the Virtual Processor ratios are 16:1 and 4:1, and the data points are quantized
to 1024 x 1024 or 512 x 512. Distance calculations are in floating point. For the direct convex

hull (calculations in floating point), and minimum spanning tree problems, the VP ratio is 1:1.
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5. Visibility

The input is a set of 1000 triples of triples of real coordinates, ((r,s,t),(u,v,w),(x,y,x)),
defining 1000 opaque triangles in three-dimensional space, selected at random with
each coordinate in the range (0,1000]. The output is a list of vertices of the triangles
that are visible from (0,0,0).

Each triangle can, in a preprocessing step, generate its plane equation in the form Az+ By+C = 0.
A point can then be tested for visibility by evaluating that form for its (z,y) coordinates. When
the point is behind the plane containing the triangle, each triangle can test whether it encloses
the projection of the point onto the plane. All points can test whether they are shadowed by
the triangle in parallel. The time for each triangle is approximately 12ms. Repeating this
computation serially for all 1000 triangles is obviously too expensive.

The following formulation uses multiple copies of the triangles. The problem can be parallelized
by copying the triangles 65 times in the memory (64K) of the Connection Machine. This divides
the machine into 65 subsets of processors. Each triangle processor will handle up to 47 points
(cesling(3000/65)). Triangles O through 999 occupy processors O through 999 (cube address), and
so forth. The descriptions of the triangles must be generated. A conservative estimate of the time
for generating triangles is 50ms, counting the necessary vector subtractions and cross-products
to compute normal equations for planes. The computed triangle descriptions comprise 4 plane
equations,

Az+ By+Ciz+ D=0

each of which contains 4 32-bit numbers; the entire description is 512 bits long. The descriptions
of all 1000 triangles can be copy-scanned to replicate them 65 times, in 15ms, and then sent, in

one step, to the correct processors, in 15ms. Then, points are sent to the sets of triangles against
which they are to be tested. The first 47 points are sent to processors 0...46, the next 47 to
processors 1000. .. 3046, and so forth.

In each testing step, the description of the point at the beginning of each set of points is copy-
scanned across the set of triangles. Segments bits are inserted at the termination of each set
of triangles. Scanning a 96 bit (3 x 32) field takes 3ms. All triangles test the active points in
parallel, in 12ms. Then, the descriptions of the points are sent left, in 3ms. This brings a new
point to the beginning of each section of triangles, ready to be copied to all the triangles in the
next step. Each full step takes 18ms. Since there are 47 steps, the total time required is 850ms.
An alternate formulation uses the grid structure of the CM, by mapping a projection plane,
anywhere in the visible region, orthogonal to a line of sight from the origin, onto the 256x256
grid of the CM. More than one vertex of a triangle may fall in a particular pixel, but, by being
careful, this can be made to work. Next, the vertices of the triangles generate lines in the grid,
forming the projection of the edges of the triangles onto the grid, by a standard vector to raster
conversion method. This step should require no more than 25ms. Finally, the projected vertices

of triangles are distributed across the rows of the grid by a grid-scan operation, stopping at the
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pixels containing projected edges of the triangles. The scan operations allow stop information to
be included in the process. Each time a point encounters an edge, it checks to see whether the
plane represented by the edge covers it. If so, the point turns off, and is no longer handled. Scan
operations continue as long as active points encounter edges. The total number of iterations is the
number of triangles enclosing, but not covering a point. Simulations performed using the specified
number of triangles with the given range of coordinates, randomly generated, showed that the
maximum number of triangles enclosing but not covering a point averages around 200. Each scan
operation, with a check to find whether the point is covered, should require no more than 5ms.
The total, approximately 18, is less than the previous method. In addition, this method depends
on the number of triangles which overlap when projected. Random input as specified should
be the worst case for this method; most practical examples should have maximum coverings
approximately 10 or 20.

Triangle Visibility

Method Implemented | Estimated
Multiple copies — 850ms
Scanning — 1.0s

Note: The times quoted here are based on a configuration of a 64K CM, using a Virtual Processor
ratio of 1:1. All calculations are floating point.

6. Graph matching

The input is a graph G having 100 vertices, each joined by an edge to 10 other vertices
selected at random, and another graph H having 30 vertices, each joined by an edge
to 3 other vertices selected at random. The output is a list of the occurrences of (an
isomorphic image of) H as a subgraph of G. As a variation on this task, suppose the
vertices (and edges) of G and H have real-valued labels in some bounded range; then
the output is that occurrence (if any) of H as a subgraph of G for which the sum of
the absolute differences between corresponding pairs of labels is a minimum.

This task (subgraph isomorphism) is known to be NP-complete. There is no known method by
which any method for solving this problem, even with a number of processors polynomial in N,
the size of the problem, can improve upon worst-case behavior depending on the exponential
number of possible matchings. The graphs in this particular problem are uniform in degree, so
that all nodes in H can match with all nodes in G, before any expansion of solution nodes occurs.

Most heuristics for this problem rely on non-uniformity of the degrees of nodes in the graphs,
and so will fail for this instance of the problem.
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For this particular example, Carl Feynman implemented a program to test for subgraph iso-
morphism on random graphs having the specified structure. His program ran for 17 hours on a
Symbolics 3640 Lisp Machine, had found 13,000 solution matchings, and had explored 10~% of
the search space, from which he conjectured that there were 10!? solutions for this pair of ran-
. dom graphs having the required characteristics. Statistical arguments from the theory of random
graphs, concerning threshold functions, indicate that, when matching graphs of the specified sizes
and degrees, there is a matching with probability one, or, to put it another way, there are a large
number of candidate matches.
We will outline a method to distribute the matching process among the processors of the CM. A
similar solution for objection recognition is described in [9]. The method will be specialized to this
particular size of graph, but should be generic enough to be generalized for any sizes. We utilize
dynamic allocation of processors to matchings. A partial matching is contained in a processor.
At each step in the graph matching algorithm a matching (processor) will acquire the information
necessary to determine all legal successors. It will then find processors to continue with the new
matchings; it is then returned to the pool of free processors. The information concerning the
graphs can be stored in several ways in the memory of the Connection Machine. Since |G| is
100, 7 bits is needed to reference an entry in G. We store the adjacency list for a vertex in G as
a 100-bit vector in a processor. The graph G is stored, with many copies, throughout the CM.
Each of the 100 nodes is represented in a processor containing the adjacency list for a vertex in
G. This means, with 64K processors, that there will be approximately 655 copies of the graph,
one for every 100 matchings. Each processor can be made to access these copies randomly, so
that contention among the processors is minimized. The address of the vertex neighbor list for
vertex G; needed by a matching can be calculated from the address of the matching processor,
J and a random variable. |H| is 30, so only 5 bits is needed to reference a vertex in H. Each
vertex has degree 3, so the complete description of graph H only requires 30 x 3 x 5 = 450 bits. A
matching need+ to record for each vertex in H the matched vertex in G, so it needs 30 x 7 = 210
bits. Each matching processor will contain a description of H as well as the partial matching it
is expanding.
Initially no processors are allocated. We use rendezvous allocation[4] to assign processors to
matchings. Consider a tableau (figure 5, in which the nodes of G are arranged left-to-right across
the top, and the nodes of H are arranged top-to-bottom on the left. We represent matching node
H; with G; by an entry in (row,column)= (3, ) in the tableau. A partial matching is expanded

from the partial matching in the column above it. Search proceeds in a depth-first, left-to-right
fashion. Care must be taken to leave enough free processors so that all expanding search nodes
can complete, that is, either fail or expand the full search sub-tree to leaf nodes. The order in
which vertices in H are matched to G can be pre-computed to maximize the number of vertices in

H adjacent to the next vertex to be expanded. In that way, maximum constraint can be applied

at each step.

In each phase of matching generation, a matching at level k, initially 1, must expand itself

to all legal successor matchings at the next level. Matching processors may be expanding at
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Figure 5: Match Expansion in Graph Matching

many different levels in the matchings, since resource limitations may delay expansion until some
processor fails, and is returned to the pool. To expand itself, a matching must know, first, the
neighbors of Hy,{, and, second, the vertices in G to which those neighbors have been matched.
These data allow the matching at level k to prune its expansion, generating only legal successors.
The description of H is stored locally in each processor. To recover the neighbors of Hy,,, all
processors step through the description of H, until they encounter the k + 1*» entry, and then
record the contents of this entry. This should take no longer than 3ms. This step finds the y
neighbors of the new vertex in H.

The order of expansion of H nodes can be arranged so that every node is connected to at least

one previously matched vertex in H. Each expanding matching must then examine the neighbors

in H of this new vertex to determine the nodes in G to which they have been matched. There

will be at least one and no more than 3. For each such vertex in G, the neighbors of the node in

G must be retrieved from the distributed representation of G. Each matching processor sends to

the appropriate processor representing the neighbors of the appropriate vertex in G, and receives

a return message describing the neighbors of that vertex in G. Each such message is 100 bits

long, representing the set of vertices in G adjacent to the matched vertex; this takes 5ms per

vertex, so 15ms total may be required. Now, we must compute the intersection of these bit

vectors, describing all possible nodes in G which are adjacent to the matches in G of neighbors of s
Hy,,. This can be done in less than 3ms, at the same time recording all vertices in G which lie

in the intersection. Then a step of 3ms can exclude from the list all nodes already matched in the
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current matching. These are the possible expansions in G. All are legal, that is, the nodes in G to
be matched are unmatched, and are adjacent to existing constraining matches from H. If this set
is empty, the matching fails. Each matching will then have m < 10 possible expansion matches,
and can request m processors from the free pool, in a processor allocation step. The description
partial matching at the k** level can be distributed to the successor nodes during allocation.
The matching processor then returns itself to the free pool of processors. Some matchings may
be prevented from expanding to allow matchings which are more advanced to reach completion.
A priority mechanism can be implemented to favor matchings which are nearer completion.
The overhead of allocation and distribution should be no more costly than the entire previous
computation, which requires approximately 25ms, bringing the total to 50ms. Clearly, it is only
slightly more difficult to maintain the cost of a matching and return the matching with the
minimum cost than it is to generate all possible matchings. In fact, the constraint will reduce
search when standard alpha-beta pruning methods are applied.

A very conservative estimate of the time to expand one level in the search tree is 50ms. From
the initial expansion, 30 steps are required to finish at least the very first full matching, so 1.5s
in total are used to finish the first full expansion. The total throughput of this problem can be
measured in terms of the number of partial matchings in each step. The critical factor in this
problem is to control the number of active matchings. The process can monitor itself to record
the average number of successors at each level, allowing good control of allocation. The rate of
expansion, the number of legal successors at each level, should, at first, be high, then should
taper off as more constraint occurs. If, say, 20 per cent of the processors are actively expanding,
then this method can explore approximately 10K partial matching expansions for every 50ms.

Graph Matching
Method Implemented | Estimated
Per expansion step — 50ms

7. Minimume-cost path

) The input is a graph G having 1000 vertices, each joined by an edge to 100 other
b vertices selected at random, and where each edge has a nonnegative real-valued weight
4 in some bounded range. Given two vertices P,Q of G, the problem is to find a path
: from P to Q along which the sum of the weights is minimum.

The graph can be represented as an adjacency list in the CM. The algorithm, a CM implementa-
tion of Dijkstra’s algorithm, is given in [4]. Each step in computing the shortest path consists in
each vertex sending to each of its neighbors the distance from the source to itself plus the length

of the connecting edge along which the message is sent. With this number of vertices and edges,
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there are more edges (100,000) than the number of processors, so virtual processors will be used,
at the ratio of 2:1. Each step involves a send operation, using the router. The receiver compares

all incoming values and selects the minimum.

Consider sending messages only when the distance from the source is less than infinity (some
initial value for all processors). This reduces the number of conflicts at many stages. Initial
experiments require 9ms per step and analysis indicates that 5ms per step is possible to achieve.
The number of steps depends on the diameter (the length of the longest path in the graph
explored). The algorithm stops when no processor changes its value as the result of the messages
it has received. For this particular problem, with such high degree of interconnection, the number
of steps should be around 10, resulting in an overall time to completion of approximately 50ms.

The implementation and experiments were performed by Mike Drumbheller.

Minimum Cost Path
Method Implemented | Estimated
90ms 50ms

Note: The times quoted here are based on a configuration of a 64K CM, using a Virtual Processor
ratio of 1:1.
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Task . Implemented | Estimated
Edge detection
Convolution 3ms 2ms
Find Zero-Crossings 0.5ms 0.5ms
Propagate label 40ms 40ms
Enumerate curves 350us 350us
Rank and send pixels 91ms 41ms
Total - without Output 44ms 43ms
Total - with Output 135ms 99ms
Connected Component Labeling
Doubling method (length = 512 x 512) — 300ms
Doubling method (length = 512) — 150ms
Scan method (12 phases) 450ms 150ms
Hough Transform
Full 180 steps (512x512) — 720ms
Full 180 steps (256x256) — 540ms
From edge elements (512x512) — 30ms
Geometric Constructions
Convex Hull (from VD) — 50ms
Convex Hull (Graham scan) — 200ms
Convex Hull (Jarvis march) 150ms 100ms
Voronoi Diagram (1024x1024) 4s 2s
Voronoi Diagram (512x512) 1s 500ms
Minimum Spanning Tree (from VD) — 150ms
Triangle Visibility
Multiple copies — 850ms
Scanning — 1.0s
Graph Matching
Per expansion step — 50ms
Minimum Cost Path

90ms 50ms

"

Figure 6;: Summary Table
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